Search results for "Dihydrofolate reductase"

showing 10 items of 15 documents

Minimization of dynamic effects in the evolution of dihydrofolate reductase

2015

Protein isotope labeling is a powerful technique to probe functionally important motions in enzyme catalysis and can be applied to investigate the conformational dynamics of proteins.

0301 basic medicineStereochemistry010402 general chemistrymedicine.disease_causeenzyme catalysis01 natural sciencesEnzyme catalysisCatalysis03 medical and health sciencesdihydrofolate reductaseDihydrofolate reductaseEscherichia colimedicineQDdynamic effectsEscherichia colichemistry.chemical_classification030102 biochemistry & molecular biologybiologyThermophilefungifood and beveragesGeneral Chemistry0104 chemical sciencesChemistryEnzymechemistryMoritella profundabiology.proteinBiophysicsMesophileChemical Science
researchProduct

Quantifying the limits of transition state theory in enzymatic catalysis

2017

Significance Transition state theory (TST) is the most popular theory to calculate the rates of enzymatic reactions. However, in some cases TST could fail due to the violation of the nonrecrossing hypothesis at the transition state. In the present work we show that even for one of the most controversial enzymatic reactions—the hydride transfer catalyzed by dihydrofolate reductase—the error associated to TST represents only a minor correction to the reaction rate. Moreover, this error is actually larger for the reaction in solution than in the enzymatic active site. Based on this finding and on previous studies we propose an “enzymatic shielding” hypothesis which encompasses various aspects …

Surface (mathematics)enzymatic catalysisDegrees of freedom (statistics)Molecular Dynamics Simulation010402 general chemistry01 natural sciencesEnzyme catalysisReaction coordinateReaction rateTransition state theoryMolecular dynamicsdihydrofolate reductasetransmission coefficientComputational chemistry0103 physical sciencesHumansdynamic effectsStatistical physicsIonsMultidisciplinary010304 chemical physicsChemistryState (functional analysis)Biological Sciencesbacterial infections and mycoses0104 chemical sciencesChemistryBiophysics and Computational BiologyKineticsTetrahydrofolate Dehydrogenasetransition state theoryPhysical SciencesBiocatalysisProceedings of the National Academy of Sciences
researchProduct

On Transition Structures for Hydride Transfer Step: A Theoretical Study of the Reaction Catalyzed by Dihydrofolate Reductase Enzyme

1996

Abstract A theoretical study is presented of the catalytic mechanism of dihydrofolate reductase (DHFR) enzyme based upon the characterization of the transition structure (TS) for the hydride transfer step. Analytical gradients at AM1 and PM3 semiempirical levels have been used to characterize the saddle point of index one (SPi-1) on global energy hypersurface for the hydride transfer in the active site of DHFR enzyme. The geometry, stereochemistry, electronic structure, and transition vector (TV) components associated to SPi-1 are qualitatively computational level independent. The TV amplitudes show primary and secondary isotope effects to be strongly coupled. The geometrical arrangement of…

biologyHydrideStereochemistryChemistryOrganic ChemistryActive siteElectronic structureBiochemistryEnzyme catalysisCatalysisCrystallographySaddle pointDrug DiscoveryDihydrofolate reductaseKinetic isotope effectbiology.proteinMolecular BiologyBioorganic Chemistry
researchProduct

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

2017

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in type 2 diabetes mellitus (T2DM). The overarching hypothesis is that hyperglycemia and glucotoxicity are upstream of all other complications seen in diabetes. The aim of this study was to investigate effects of empagliflozin on glucotoxicity, β-cell function, inflammation, oxidative stress and endothel…

Male0301 basic medicineendocrine system diseasesDiabetic CardiomyopathiesFPS-ZM1 RAGE inhibitorClinical BiochemistryAorta ThoracicRAGE receptor for AGEICAM-1 intercellular adhesion molecule-1ECL enhanced chemiluminescence030204 cardiovascular system & hematologyDPP-4 dipeptidyl peptidase-4medicine.disease_causeTNF-α tumor necrosis factor-αBiochemistryeNOS endothelial •NO synthase (type 3)0302 clinical medicineGlucosidesecSOD extracellular superoxide dismutaseInsulin-Secreting CellsCCL-2 see MCP-1HyperlipidemiaHyperinsulinemiaGTN glyceryl trinitrate (nitroglycerin)IFN-γ interferon-γDHE dihydroethidineEndothelial dysfunctionEndothelial dysfunctionIL-6 interleukin-6lcsh:QH301-705.5HO-1 heme oxygenase-1lcsh:R5-920ICAM-1NG normoglycemiaDiabetesNox catalytic subunit of NADPH oxidaseSGLT2 inhibitorβ-cell contentL-012 8-amino-5-chloro-7-phenylpyrido[34-d]pyridazine-14-(2H3H)dione sodium saltChIP chromatin immunoprecipitationC-Reactive ProteinCRP C-reactive proteinAGE advanced glycation end productsHbA1c glycohemoglobinlcsh:Medicine (General)Research PaperZucker diabetic fatty ratsmedicine.medical_specialtyDMSO dimethylsulfoxideMCP-1 monocyte-chemoattractant-protein-1qRT-PCR quantitative reverse transcription polymerase chain reactionZDF Zucker diabetic fatty (rat)Low-grade inflammation03 medical and health sciencesROS reactive oxygen speciesSodium-Glucose Transporter 2Physiology (medical)Internal medicineDiabetes mellitusPKC protein kinase CEmpagliflozinmedicineAnimalsHypoglycemic AgentsBenzhydryl CompoundsCOX2 cyclooxygenase-2SGLT2i SGLT2 inhibitorSodium-Glucose Transporter 2 InhibitorsGlycated HemoglobinACh acetylcholinebusiness.industryOrganic Chemistrynutritional and metabolic diseasesType 2 Diabetes Mellitusmedicine.diseaseH2K9me2 histone3 lysine9 dimethylationRatsRats ZuckerDHFR dihydrofolate reductaseSGLT2 sodium-glucose co-transporter-2Oxidative StresssGC soluable guanylyl cyclaseGlucose030104 developmental biologyEndocrinologylcsh:Biology (General)ALDH-2 mitochondrial aldehyde dehydrogenaseEndothelium VascularAGE/RAGE signalingHG hyperglycemiabusinessOxidative stressRedox Biology
researchProduct

2015

Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes (2H, 13C, 15N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea th…

biologyStereochemistryChemistryProtein dynamicsNatural abundanceGeneral ChemistryCatalysisEnzyme catalysisCatalysisIntramolecular forceKinetic isotope effectDihydrofolate reductasebiology.proteinChemical ligationAngewandte Chemie International Edition
researchProduct

Target Analogue Imprinted Polymers with Affinity for Folic Acid and Related Compounds

2001

Two approaches to synthesize molecularly imprinted polymers with affinity for folic acid and other substituted pteridines have been compared. In the first approach, the folic acid analogue methotrexate was used as template and functional monomers capable of generating selective binding sites were searched in a miniaturized screening system based on binding assessment in the batch mode. Highest selectivity was seen using 2-vinylpyridine as functional monomer, which was confirmed in the chromatographic mode for a batch synthesized on a gram scale. However, the retentivity and selectivity of this phase were insufficient for anticipated applications. In a second approach, using methacrylic acid…

chemistry.chemical_classificationbiologyPolymersPteridinesMolecularly imprinted polymerGeneral ChemistryPolymerBiochemistryCatalysischemistry.chemical_compoundFolic AcidMethotrexateColloid and Surface ChemistryEnzymeMethacrylic acidchemistryDihydrofolate reductasemedicinebiology.proteinOrganic chemistryBinding siteSelectivityPteridinemedicine.drugJournal of the American Chemical Society
researchProduct

Exploring Chemical Reactivity in Enzyme Catalyzed Processes Using QM/MM Methods: An Application to Dihydrofolate Reductase

2015

Enzymes are the catalysts used by living organisms to accelerate chemical processes under physiological conditions. In this chapter, we illustrate the current view about the origin of their extraordinary rate enhancement based on molecular simulations and, in particular, on methods based on the combination of Quantum Mechanics and Molecular Mechanics potentials which provide a solution to treat the chemical reactivity of these large and complex molecular systems. Computational studies on Dihydrofolate Reductase have been selected as a conductor wire to present the evolution and difficulties to model chemical reactivity in enzymes. The results discussed here show that experimental observatio…

Chemical processQuantitative Biology::BiomoleculesbiologyChemistryProtein dynamicsMolecular mechanicsEnzyme catalysisQM/MMTransition state theoryMolecular dynamicsBiochemistryChemical physicsDihydrofolate reductasebiology.protein
researchProduct

Increased dynamic effects in a catalytically compromised variant of Escherichia coli dihydrofolate reductase

2013

Isotopic substitution (15N, 13C, 2H) of a catalytically compromised variant of Escherichia coli dihydrofolate reductase, EcDHFR-N23PP/S148A, has been used to investigate the effect of these mutations on catalysis. The reduction of the rate constant of the chemical step in the EcDHFR-N23PP/S148A catalyzed reaction is essentially a consequence of an increase of the quasi-classical free energy barrier and to a minor extent of an increased number of recrossing trajectories on the transition state dividing surface. Since the variant enzyme is less well set up to catalyze the reaction, a higher degree of active site reorganization is needed to reach the TS. Although millisecond active site motion…

StereochemistryCoupled motionsKnockoutHydride transferProtein dynamicsChemical stepmedicine.disease_causeTemperature-dependenceBiochemistryCatalysisArticleCatalysisEnzyme catalysisColloid and Surface ChemistryReaction rate constantDihydrofolate reductasemedicineEscherichia coliQDEscherichia colichemistry.chemical_classificationbiologyChemistryProtein dynamicsActive siteEnzyme catalysisGeneral ChemistryTetrahydrofolate DehydrogenaseEnzymeDehydrogenasebiology.proteinBiocatalysisConformational motions
researchProduct

Candidate target mechanisms of the growth inhibitor cyromazine: Studies of phenylalanine hydroxylase, puparial amino acids, and dihydrofolate reducta…

2000

Cyromazine, an insect growth regulator, affects larval and pupal cuticles in dipterans and some other insects. The mode of action of this aminotriazine is not known yet, though it has been shown not to inhibit the synthesis of chitin and cuticular proteins. Cyromazine may, however, act on some step(s) of sclerotization of the cuticle. In the present study, we have analyzed the key enzyme for the production of sclerotization agents, phenylalanine hydroxylase (PAH), using the enzyme from Drosophila, a cyromazine-sensitive insect. PAH was studied in vitro with cyromazine and three biologically less active derivatives at concentrations ranging from 1 μM to 1 mM. None of the compounds did signif…

Phenylalanine hydroxylasePhysiologyCuticlePhenylalanineBiologyBiochemistrychemistry.chemical_compoundHousefliesDihydrofolate reductaseAnimalsAmino AcidsTyrosineMode of actionchemistry.chemical_classificationTriazinesDipterafungiPupaPhenylalanine HydroxylaseGeneral MedicineCyromazineJuvenile HormonesTetrahydrofolate DehydrogenaseDrosophila melanogasterEnzymechemistryBiochemistryInsect Sciencebiology.proteinArchives of Insect Biochemistry and Physiology
researchProduct

DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents.

2019

Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, …

AntifungalCancer chemotherapymedicine.drug_classDrug Evaluation Preclinicaldihydrofolate reductase (DHFR) enzymePharmaceutical ScienceAntineoplastic AgentsComputational biologyReview01 natural scienceshybrid compoundsAnalytical Chemistrylcsh:QD241-44103 medical and health sciencesStructure-Activity RelationshipFolic Acidlcsh:Organic chemistryheterocyclic compoundsNeoplasmsDihydrofolate reductaseparasitic diseasesDrug DiscoverymedicineAnimalsHumansPhysical and Theoretical Chemistry030304 developmental biology0303 health sciencesHeterocyclic compoundbiology010405 organic chemistryDrug discoveryOrganic ChemistryDHFR inhibitors as anticancer agentSettore CHIM/08 - Chimica Farmaceutica0104 chemical sciencesDHFR drug discoveryTetrahydrofolate DehydrogenaseMechanism of actionChemistry (miscellaneous)Settore CHIM/03 - Chimica Generale E InorganicaDHFR inhibitors as anticancer agentsbiology.proteinMolecular MedicineFolic Acid Antagonistsmedicine.symptomMolecules (Basel, Switzerland)
researchProduct